Fiche n°2 cancéro – Le Cancer par le Gène

I. Qu'est ce que le cancer?

a. Généralités

- Maladie longtemps incurable mais qui est devenue aujourd'hui une maladie chronique
- Maladie génétique acquise -> modification dynamique du génome des cell somatique
 - ->fruit d'une évolution cellulaire clonale
 - ->accumulation successive de 5 à 10 anomalies génétique

carcinogenèse multi étape

b. Prolifération incontrôlée

Organisme : 10^8 cell en renouvellement. Processus étroitement contrôlé (facteurs de croissance + apoptose) Cancer : prolifération incontrôlée. Détectable à partir de $10^8 - 10^9$ cell.

- c. Capacités acquises selon Hanahan et Weinberg
- Insensibilité aux signaux anti prolif

- Insensibilité signaux apoptose

- Capacités illimitée de prolifération
- Angiogenèse
- Capacités d'invasion (métastases)
- ⇒ Combinatoire infinie des altérations pour atteindre le but : la croissance incontrôlée.

- Autosuffisance

II. Principaux gènes altérés

Oncogènes	Gène dont la présence ou le fonctionnement	Effet dominant	
	excessif contribue à l'oncogenèse. Gène	Altération d'1 allèle est suffisante pour	
	transformant.	entrainer une activation anormale	
Anti oncogènes /	Gène dont l'absence ou le mauvais	Effet récessif	
suppresseurs de tumeurs	fonctionnement contribue à l'oncogenèse	Altération des 2 allèles est nécessaire pour	
	régulation neg du cycle cellulaire	entrainer une perte d'activité	
	+ induction apoptose		
Gènes de réparation de l'ADN	Gènes dont la déficience favorise l'apparition		
	d'anomalies génétiques		

III. Types d'altérations

in Types a alterations						
Qualitatives	Mutations ponctuelles	Activation d'oncogènes		Altération de gènes suppresseurs de		
	délétions			tumeur		
	Translocations	Création nveaux oncogènes (surexpression car nveaux promoteurs)				
	Gain de gènes exogènes	Gène introduit pa	e introduit par virus. Abouti nouvelle protéine oncogénique			
Quantitatives	Amplifications	Activation	Augmentation du nombre de copie d'un gène		Augmentation du nombre de copie d'un gène	
	Surexpressions	d'oncogènes	Pas d'augmentation du nombre de copies, juste			
			augmentation de l'expression			
	Epigénétique	Perte d'expressio	te d'expression de gènes suppresseurs de tumeurs			

IV. Exemples

a. Oncogènes

- Miment un signal de prolifération : fait intervenir des facteurs de Croissance (FC) surexprimé car dirigés par un oncogène et qui agissent sur Re transmembranaire et sur la voie sous jacente.

- Voie EGFR : TGF se lie à EGFR -> phospho croisée -> SOS+GRB2 -> Ras -> Raf -> Erk -> Elk

	Re EGF	RAS	BCR/ABL	c-myc
		Pte protéine G	ABL est une tyrK	Facteur de transcription
			BCL est gène avec un promoteur dit «fort»	nbreux gènes cycle cellulaire
Surexpression	Recepteur	Mutation maintiennent Ras	Oncogène nveau par	Surexpression dans de
Re à la surface	constitutionnellement	sous sa forme active (peut	translocation	nombreux cancers.
Anomalie	actif (rcp modifié dc	plus cliver GTP en GDP) dc		Provoque instabilité génet
quantitative	actif en absence de	voie constitutionnellement		immortalisation,
	ligand)	active. Mutation qualitative.		diminution apoptose.
27 – 77%	20% des glioblastomes	40% des cancers	Leucémie myeloïde	Lymphome de Burkitt
cancers			avec translocation	(translocation juxtaposant
colorectaux			d'un bout du K22 sur	c-myc et gène IG)
50% cancers			K9. Contact entre	Neuroblastome
pancréas			ABL et promoteur de	(amplification du gène c-
			BCR.	myc)

b. <u>Gènes suppresseurs de tumeurs</u>

- Gènes suppresseurs : freinent le cycle cellulaire et induisent l'apoptose
 - -> protéines de control cellulaire : Rb, p53, p16
 - -> protéines de régulation de l'apoptose : p53
 - -> protéines de signalisation cellulaire : PTEN

Rb:

- Phase G1 Rb est actif -> séquestre E2F (inactif).
- Synthèse de cycline D -> active cdk 4 et 6 -> phosphorylent Rb -> Rb est inactif -> E2F est libre -> transcription des cyclines A et E -> déclanchement phase S.
- Lors d'une mutation de Rb, il n'y a plus de frein pour empêcher l'action de E2F : Rb est gène suppresseur.
- Mutation de Rb dans le rétinoblastome. On retrouve l'hypothèse de Knudson (=principe des 2 hits) valable pour tous les gènes suppresseurs de tumeurs.
 - → Forme sporadique : il faut des altérations sur les 2 allèles du gène Rb. En effet, ces gènes fonctionnent sur le mode récessif.
 - → Forme familiale et bilatérale (touche 2 yeux) : pré existence d'une altération germinale sur l'un des allèles du gène Rb. 1 seul évènement permet de déclencher un cancer. Prédisposition.

P53:

<u>Histoire</u>: découvert dans les virus oncogéniques (SV40). Au début on croyait que P53 était un oncogène car les expériences avaient été menées avec une forme mutée de P53. On s'est rendu compte plus tard de l'erreur : en fait c'est un gène suppresseur de tumeur. Notons que P53 sauvage est dominant par rapport à P53 muté.

<u>Caractéristiques</u>: P53 est une mol clé d'un grand nbr de stress et le facteur de transcription de plus de 150 gènes Hypothèse de Knudson:

- → Mutation somatique de P53 puis perte de l'autre allèle. +50% des cancers sont invalidés par P53.
- → Syndrome de Li Fraumeni : forme familiale avec mutation germinale de P53. Prédisposition aux cancers

PTEN:

- Voie MapK: Ras -> formation de PIP2 -> active PKB (=AKT) -> active mTor -> synthèse protéique
 - -> transcription de gènes impliqués dans apoptose
- PTEN est un inhibiteur de la voie AKT. Lors de la mutation de ce gène, on a une levée d'inhibition et activation continue de cette voie.

V. Impact de ces altérations

- Toutes les altérations ne se « valent » pas: altérations fondatrices (drivers) et altérations passagères (passenger) Et le défi est d'identifier les altérations cruciales pour la survie de la cell cancéreuse et agir dessus.
- Les voies de signalisation sont convergentes, redondantes
- Les modifs du génome tumoral sont dynamiques
- La cellule tumorale s'adapte à la pression de sélection.
- L'environnement de la cellule tumorale joue un rôle important.